c{1}{2}y=x?21。
将直线的方程代入椭圆方程x22+y2=1\\frac{x^2}{2}+y^2=12x2+y2=1,得到关于x的一元二次方程:
x22+(x?12)2=1\\frac{x^2}{2}+(x-\\frac{1}{2})^2=12x2+(x?21)2=1
x22+x2?x+14=1\\frac{x^2}{2}+x^2-x+\\frac{1}{4}=12x2+x2?x+41=1
32x2?x?34=0\\frac{3}{2}x^2-x-\\frac{3}{4}=023x2?x?43=0
6x2?4x?3=06x^2-4x-3=06x2?4x?3=0
设(x?,y?),N(x?,y?),则x1+x2=46=23x_1+x_2=\\frac{4}{6}=\\frac{2}{3}x1+x2=64=32,x1x2=?36=?12x_1x_2=-\\frac{3}{6}=-\\frac{1}{2}x1x2=?63=?21。
ipi?ipNi=(x1?xp)2+(y1?yp)2?(x2?xp)2+(y2?yp)2|p|\\cdot|pN|=\\sqrt{(x_1-x_p)^2+(y_1-y_p)^2}\\cdot\\sqrt{(x_2-x_p)^2+(y_2-y_p)^2}ipi?ipNi=(x1?xp)2+(y1?yp)2?(x2?xp)2+(y2?yp)2
由于点,N在直线y=x?12y=x-\\frac{1}{2}y=x?21上,且p(1,1\/2)也在这条直线上(因为直线过p点),所以p和pN的表达式可以简化。
实际上,p是弦N上的一个定点。
ipi?ipNi=i(x1?xp)(x2?xp)i?(1+k2)|p|\\cdot|pN|=|(x_1-x_p)(x_2-x_p)|\\cdot(1+k_^2)ipi?ipNi=i(x1?xp)(x2?xp)i?(1+k2),这里k=1k_=1k=1。
ipi?ipNi=ix1x2?xp(x1+x2)+xp2i?(1+12)|p|\\cdot|pN|=|x_1x_2-x_p(x_1+x_2)+x_p^2|\\cdot(1+1^2)ipi?ipNi=ix1x2?xp(x1+x2)+xp2i?(1+12)
ipi?ipNi=i?12?1(23)+12i?2=i?12?23+1i?2=i?3+4?66i?2=i?16i?2=13|p|\\cdot|pN|=|-\\frac{1}{2}-1(\\frac{2}{3})+1^2|\\cdot2=|-\\frac{1}{2}-\\frac{2}{3}+1|\\cdot2=|-\\frac{3+4-6}{6}|\\cdot2=|-\\frac{1}{6}|\\cdot2=\\frac{1}{3}ipi?ipNi=i?21?1(32)+12i?2=i?21?32+1i?2=i?63+4?6i?2=i?61i?2=31。
这个计算过程,秦风写得极为流畅。
接下来是计算|pA|·|pb|。
直线l的方程为y?12=?1(x?1)y-\\frac{1}{2}=-1(x-1)y?21=?1(x?1),即y=?x+32y=-x+\\frac{3}{2}y=?x+23。
代入椭圆方程x22+y2=1\\frac{x^2}{2}+y^2=12x2+y2=1:
x22+(?x+32)2=1\\frac{x^2}{2}+(-x+\\frac{3}{2})^2=12x2+(?x+23)2=1
x22+x2?3x+94=1\\frac{x^2}{2}+x^2-3x+\\frac{9}{4}=12x2+x2?3x+49=1
32x2?3x+54=0\\frac{3}{2}x^2-3x+\\frac{5}{4}=023x2?3x+45=0
6x2?12x+5=06x^2-12x+5=06x2?12x+5=0
设A(x?,y?),b(x?,y?),则x3+x4=126=2x_3+x_4=\\frac{12}{6}=2x3+x